# **MA4** Features

- 12-bit Analog or PWM output
- Miniature size (0.55 in. diameter)
- -40C to 125C operating temperature range
- Latching Connector
- Three shaft torque options



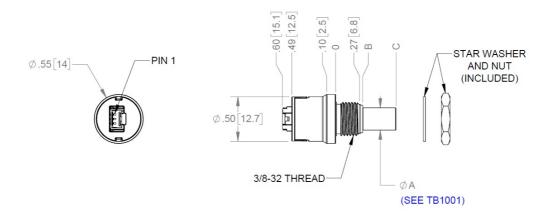
# **MA4 Miniature Absolute Encoder Product Description**

The MA4 is a magnetic absolute encoder that reports the shaft position over 360° with no stops or gaps. This shafted encoder is available with an analog or a pulse width modulated (PWM) digital output. This is the new generation of the US Digital MA3 absolute encoder, magnetic.



Analog output provides a DC voltage that is proportional to the absolute shaft position with 12-bit resolution.

PWM output provides a pulse duty cycle that is proportional to the absolute shaft position. PWM output has 12-bit resolution with 2 different output frequency options.


Three shaft torque options are available:

- Default (-D): sleeve bushing with higher damping for human interface applications.
- Ball bearing (-B): miniature precision ball bearings suitable for high-speed applications (1/8" diameter shaft only).
- Light static drag (-N): sleeve bushing with lower damping for low-speed applications.

The MA4 is connected using a 3-pin latching, 1.25mm pitch polarized connector.

# **Mechanical Drawings**





| TORQUE         | SHAFT ∅     | ØΑ            | Ø A TOL                     | В         | С          |
|----------------|-------------|---------------|-----------------------------|-----------|------------|
|                | 1/8" (.125) | .1248 [3.170] | +.0000 [0]<br>0003 [-0.008] | .33 [8.3] | .68 [17.2] |
| -D / -N OPTION | 6mm (.236)  | .2360 [5.994] | +.0000 [0]<br>0003 [-0.008] | .33 [8.3] | .68 [17.2] |
|                | 1/4" (.250) | .2498 [6.345] | +.0000 [0]<br>0004 [-0.010] | .30 [7.7] | .68 [17.2] |
| -B OPTION      | 1/8" (.125) | .1247 [3.167] | +.0000 [0]<br>0003 [-0.008] | .31 [8]   | .69 [17.5] |



1400 NE 136th Avenue
Vancouver, Washington 98684, USA

info@usdigital.com www.usdigital.com

Local: 360.260.2468 Toll-free: 800.736.0194

UNITS: INCHES [MM] METRIC SHOWN FOR REFERENCE ONLY

RELEASE DATE: 12/19/2024

# **Specifications**

## **ENVIRONMENTAL**

| PARAMETER                              | VALUE       | UNITS |
|----------------------------------------|-------------|-------|
| Operating Temperature                  | -40 to +125 | С     |
| Vibration (10Hz to 2kHz, sinusoidal)   | 20          | G     |
| Shock (6 milliseconds, half-sine)      | 75          | G     |
| Electrostatic Discharge, IEC 61000-4-2 | ± 4         | kV    |



#### **MECHANICAL**

| SPECIFICATION                     | SLEEVE BUSHING                               | BALL BEARING                                                                                                            |
|-----------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Max. Shaft Speed (1) (mechanical) | 100 RPM                                      | 15000 RPM                                                                                                               |
| Max. Acceleration                 | 10000 rad/sec²                               | 250000 rad/sec <sup>2</sup>                                                                                             |
| Max. Shaft Torque                 | 0.5 in-oz (D-option)<br>0.3 in-oz (N-option) | 0.05 in-oz (B-option)                                                                                                   |
| Max. Shaft Loading                | 2 lb. dynamic<br>20 lb. static               | 1 lb.                                                                                                                   |
| Bearing Life (2)                  | > 1000000<br>revolutions                     | $L_{10}$ = $(28.3/F_r)^3$ Where $L_{10}$ = bearing life in millions of revs, and $F_r$ = radial shaft loading in pounds |
| Weight                            | 0.42 oz.                                     | 0.31 oz.                                                                                                                |
| Max. Shaft Runout                 | 0.0015 in. T.I.R.                            | 0.0015 in. T.I.R.                                                                                                       |

<sup>(1)</sup> The chip that decodes position uses sampled data. There will be fewer readings per revolution as the speed increases. The formula for number of readings per revolution is given by:

### **MOUNTING**

| PARAMETER             | VALUE               | UNITS  |
|-----------------------|---------------------|--------|
| Hole Diameter         | 0.375 +0.005 / -0.0 | in.    |
| Panel Thickness       | 0.125 max.          | in.    |
| Panel Nut Max. Torque | 20.0                | in-lbs |

#### **MATERIALS**

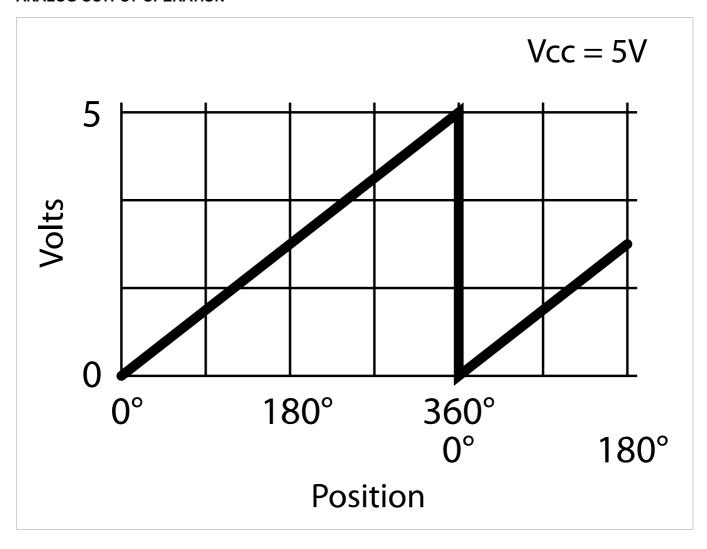
| COMPONENT | MATERIAL           | TORQUE OPTION(S)                                                 |
|-----------|--------------------|------------------------------------------------------------------|
| Shaft     | Stainless<br>Brass | Sleeve Bushing (-D and -N options) Ball Bearing (-B option only) |
| Bushing   | Brass              | -                                                                |

# **MAGNETIC FIELD CROSSTALK**

The MA4 absolute encoder contains a small internal magnet that generates a weak magnetic field extending outside the housing of each encoder. If two MA4 units are mounted closer than 1 inch apart (shaft center to center distance), install a magnetic shield such as a thin steel plate between the two encoders. This prevents magnetic field cross-talk from causing small changes in the reported positions.



n = 400000 / rpm


<sup>(2)</sup> only valid with negligible axial shaft loading



### **ELECTRICAL**

| PARAMETER      | MIN. | TYP. | MAX. | UNITS |
|----------------|------|------|------|-------|
| Power Supply   | 4.5  | 5.0  | 5.5  | Volts |
| Supply Current |      | 16   | 20   | mA    |
| Power-up Time  |      |      | 50   | mS    |

# **ANALOG OUTPUT OPERATION**



 $The \ analog \ output \ has \ 12-bit \ resolution. \ The \ analog \ output \ voltage \ is \ ratiometric \ to \ the \ power \ supply \ voltage, \ which \ is \ typically \ 5.0V$ 



| PARAMETER                                                         | MIN. | TYP.                    | MAX. | UNITS    |
|-------------------------------------------------------------------|------|-------------------------|------|----------|
| Position Sampling Rate                                            |      | 6.667                   |      | kHz      |
| Propagation Delay                                                 |      | 286                     |      | μS       |
| Output Noise (1-σ)                                                |      | 0.043                   |      | Deg. RMS |
| Max Output Voltage<br>no load<br>5k load to GND<br>2k load to GND |      | 4.99<br>4.97<br>4.92    |      | V        |
| Min Output Voltage no load 5k load to Vcc 2k load to Vcc          |      | 0.010<br>0.030<br>0.075 |      | V        |
| Capacitive Load                                                   |      |                         | 1000 | pF       |

# **PWM OUTPUT OPERATION**

The PWM duty cycle has 12-bit resolution. To measure the angular position accurately, calculate the position from the duty cycle  $(t_{on} / (t_{on} + t_{off}))$  instead of just measuring  $t_{on}$ . This will cancel out the effect of the PWM frequency tolerance.

| PARAMETER                                                | MIN.       | TYP.         | MAX.       | UNITS    |
|----------------------------------------------------------|------------|--------------|------------|----------|
| PWM Frequency -L option -H option                        | 218<br>874 | 230<br>920   | 242<br>966 | Hz       |
| PWM Duty Cycle                                           | 2.9        |              | 97.1       | %        |
| Position Sampling Rate                                   |            | 6.667        |            | kHz      |
| Propagation Delay                                        |            | 286          |            | μS       |
| Output Noise (1-σ)                                       |            | 0.043        |            | Deg. RMS |
| Output High Voltage<br>10k load to GND<br>5k load to GND |            | 4.72<br>4.44 |            | V        |
| Output Low Voltage 10k load to Vcc 5k load to Vcc        |            | 0.16<br>0.36 |            | V        |
| Capacitive Load                                          |            | 1000         |            | pF       |



### **PIN-OUTS**

# **ANALOG OUTPUT (MA4-A):**

| PIN | NAME | DESCRIPTION   |
|-----|------|---------------|
| 1   | 5    | +5VDC power   |
| 2   | A    | Analog output |
| 3   | G    | Ground        |

### PWM OUTPUT (MA4-H, MA4-L):

| PIN | NAME | DESCRIPTION |
|-----|------|-------------|
| 1   | 5    | +5VDC power |
| 2   | Р    | PWM output  |
| 3   | G    | Ground      |

## **Notes**

- Cables and connectors are not included and must be ordered separately.
- US Digital® warrants its products against defects in materials and workmanship for two years. See complete warranty (https://www.usdigital.com/company/warranty) for details.

# **Configuration Options**

| MA4 - | Output       | Shaft Diameter - | Torque                |
|-------|--------------|------------------|-----------------------|
|       | A (Analog)   | 125 (1/8")       | D (Default Torque)    |
|       | L (PWM Low)  | 236 (6mm)        | B (Ball Bearing)      |
|       | H (PWM High) | 250 (1/4")       | N (Light Static Drag) |

**PLEASE NOTE:** This chart is for informational use only. Certain product configuration combinations are not available. Visit the MA4 product page (https://www.usdigital.com/products/MA4) for pricing and additional information.

